
QUTE: Quantifying Uncertainty in TinyML models with Early-exit-assisted
ensembles for model-monitoring

Nikhil P Ghanathe 1 Steven J E Wilton 1

Abstract
Uncertainty quantification (UQ) provides a
resource-efficient solution for on-device moni-
toring of tinyML models deployed without ac-
cess to true labels. However, existing UQ meth-
ods impose significant memory and compute de-
mands, making them impractical for ultra-low-
power, KB-sized TinyML devices. Prior work
has attempted to reduce overhead by using early-
exit ensembles to quantify uncertainty in a single
forward pass, but these approaches still carry pro-
hibitive costs. To address this, we propose QUTE,
a novel resource-efficient early-exit-assisted en-
semble architecture optimized for tinyML models.
QUTE introduces additional output blocks at the
final exit of the base network, distilling early-exit
knowledge into these blocks to form a diverse
yet lightweight ensemble. We show that QUTE
delivers superior uncertainty quality on tiny mod-
els, achieving comparable performance on larger
models with 59% smaller model sizes than the
closest prior work. When deployed on a micro-
controller, QUTE demonstrates a 31% reduction
in latency on average. In addition, we show that
QUTE excels at detecting accuracy-drop events,
outperforming all prior works.

1. Introduction
Recent advancements in embedded systems and machine
learning (ML) have produced a new class of edge devices
containing powerful ML models. These milliwatt-scale KB-
sized devices, often termed TinyML devices, have low com-
pute and memory requirements. They are often deployed in
remote environments with no availability of true labels. This
makes them susceptible to both out-of-distribution (OOD)
and covariate-shifted data caused by environmental and sen-

*Equal contribution 1Department of Electrical and Com-
puter Engineering, University of British Columbia, Van-
couver, Canada. Correspondence to: Nikhil P Ghanathe
<nikhilghanathe@ece.ubc.ca>.

Input (f0)

f1 f2 fD−1 fD

fout

foutk

fout2

fout1

gθ1 gθ2 gθD−1

pϕ(y|x)

pϕ1
(y|x)

pϕ2
(y|x)

pϕk
(y|x)

pθ1(y|x) pθ2(y|x) pθD−1
(y|x)

D

K

Resource-hungry EEs assist the output blocks

{foutk}Kk=1 only during training, promoting

diversity. Removed for inference

Ensemble (K) = {pϕ1
(y|x), pϕ2

(y|x),, pϕK
(y|x)}

Figure 1: QUTE architecture. {fout}Kk=1 represents the ’K’
additional output blocks at the final exit, which are assisted
by ’K’ early-exit blocks {gθk}Kk=1 only during training to
promote diversity (see Figure 2). For inference, all (early-
exits & fout) are removed

sor variations that manifest often unpredictably in the field.
The ability of tinyML models to accurately measure the un-
certainty of their predictions is crucial for two reasons. First,
these devices generate data that is frequently used in critical
decision-making. In the context of an autonomous vehicle
(AV), uncertain predictions could result in the downstream
system making cautious driving decisions (Tang et al., 2022).
Second, tinyML devices often operate in remote environ-
ments (Vargas et al., 2021). If the inputs to the model
changes (perhaps due to spatter, fog, frost, noise, motion
blur, etc.), being aware of the model’s unreliability may
prompt an engineer to take remedial action. Many prior
methods for drift/corruption detection are either statistical
tests/methods that operate directly on input data (Bifet &
Gavalda, 2007) with huge memory requirements, or require
true labels for error-rate calculation (Gama et al., 2004;
Baier et al., 2022). In contrast, uncertainty quantification
(UQ) methods aim to estimate a model’s prediction confi-
dence without requiring true labels, providing an efficient
solution for model monitoring, particularly in resource and
power-constrained environments.

In ML models, there are two main types of uncer-
tainty (Kendall & Gal, 2017): epistemic and aleatoric. Epis-
temic uncertainty is reducible and stems from limited data
or knowledge, while aleatoric uncertainty is irreducible,

1

ar
X

iv
:s

ub
m

it/
60

03
77

3
 [

cs
.L

G
]

 1
6

N
ov

 2
02

4

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

arising from inherent randomness in data or model limi-
tations. In field-deployed tinyML models, both types of
uncertainty can emerge due to semantic (OOD) and non-
semantic changes in inputs. The non-semantic category,
which we term corrupted-in-distribution (CID) data, occurs
when sensor malfunctions or environmental factors result
in corrupted versions of expected data (e.g., fogged cam-
era lens). CID data introduces both aleatoric (e.g., due to
random noise or weather) and epistemic (e.g., from blur
or digital corruptions) uncertainties, often simultaneously,
making it crucial to capture these corruption-induced un-
certainties to ensure model reliability. Unfortunately, mod-
ern neural networks are poor in estimating uncertainty of
their predictions (Ovadia et al., 2019). Many prior works
have proposed uncertainty-aware networks: ensemble net-
works (Lakshminarayanan et al., 2017) have been found to
be extremely effective in capturing both aleatoric and epis-
temic uncertainties. Alternatively, early-exit networks have
been converted into ensembles (Antoran et al., 2020; Qen-
dro et al., 2021; Ferianc & Rodrigues, 2023). However, both
these approaches incur high memory/compute overheads
and are untenable for tinyML.

In this paper, we propose QUTE (Figure 1), a novel
and resource-efficient early-exit-assisted ensemble archi-
tecture that enables high-quality uncertainty quantification
in tinyML models in the context of both in-distribution (ID)
and corrupted-in-distribution (CID) data. As shown in Fig-
ure 1, we append additional lightweight classification heads
to an existing base neural network to create ensemble mem-
bers, and crucially, these classification heads are assisted
by the early-exits in a manner similar to the Early-View
assistance technique (Ghanathe & Wilton, 2023) to promote
diversity. Post-training, we eliminate the resource-hungry
early-exits while retaining only the economical additional
classification heads. Our approach has significantly less
memory and compute overhead compared to prior works
(59% smaller models and 3.2× fewer FLOPS compared to
the most relevant prior work (Qendro et al., 2021)). Fur-
thermore, QUTE performs better than prior methods in
estimating uncertainty caused due to CID error sources, and
on-par with prior methods for uncertainty due to OOD. We
further show that higher uncertainty is correlated with a drop
in accuracy. We evaluate QUTE’s ability to detect such ac-
curacy drop events caused by CID against prior methods,
and show that QUTE outperforms all prior methods. To
the best of our knowledge, this is the first early-exit ensem-
ble architecture for uncertainty quantification optimized for
tinyML models.

This paper is organized as follows. Section 2 presents related
work. The context and problem formulation are in Section 3.
Our approach is described in Section 4. The experimental
methodology and evaluation results are in Sections 5 and 6
respectively. Section 7 concludes the paper.

2. Related Work
Uncertainty quantification Bayesian neural networks
(BNN) are well-suited to quantify uncertainty of a
model (Blundell et al., 2015; Hernández-Lobato & Adams,
2015; Teye et al., 2018), but are parameter-inefficient and
incur a high resource/compute overhead. Monte Carlo
Dropout (MCD) (Gal & Ghahramani, 2016) creates im-
plicit ensembles by enabling dropout during multiple in-
ference passes. Recently, ensemble networks like Deep-
Ensembles (Lakshminarayanan et al., 2017) have been
shown to produce good uncertainty estimates (Zaidi & Zela,
2020; Wenzel et al., 2020; Rahaman et al., 2021). How-
ever, this too requires multiple inferences of individual net-
works, and is impractical in terms of memory for tinyML.
Other prior works have proposed multi-input and multi-
output networks that combine multiple independent net-
works into one (Havasi et al., 2021; Ferianc & Rodrigues,
2023), but they do not scale well and remain impractical
for tinyML. (Ahmed et al., 2024) ensembles only normal-
ization layers, but requires specialized hardware. Alter-
natively, prior works (Qendro et al., 2021; Ferianc & Ro-
drigues, 2023) have leveraged early-exit networks to cre-
ate implicit ensembles. The closest work to QUTE is
EE-ensemble (Qendro et al., 2021), which uses outputs
of early-exits as ensemble members. However, the early-
exits appended with extra learning layers incur a prohibitive
cost (Section 3). In contrast, ensemble distillation meth-
ods (Havasi et al., 2021; Malinin et al., 2019; Tran et al.,
2020) filter the knowledge of all ensemble members into
a conventional neural network (NN). Hydra (Tran et al.,
2020), which also uses a single multi-headed network is
closest to our work.

Single-pass deterministic network Several single-pass
(non-Bayesian) methods for UQ (Van Amersfoort et al.,
2020; Mukhoti et al., 2023; Sensoy et al., 2018; Deng et al.,
2023) offer lower memory footprints compared to ensem-
ble methods. However, they remain impractical for tinyML
due to specialized output layers or architectural constraints.
DUQ (Van Amersfoort et al., 2020) adds a specialized layer
post-softmax, drastically increasing resource use (e.g., 10×
more parameters for ResNet on CIFAR-10). DDU (Mukhoti
et al., 2023) simplifies this but relies on residual connections
for feature space regularization, limiting its applicability.
Priornets (Malinin & Gales, 2018) require OOD data, which
is often unrealistic. Postnets (Charpentier et al., 2020),
though OOD-free, focus primarily on OOD detection, often
sacrificing accuracy below the base network’s level. Other
methods like (Meronen et al., 2023) that address overcon-
fidence in early-exit networks require excessive computa-
tional resources (e.g., laplace approximations).

Model monitoring There has been a plethora of work to
detect OOD samples, which represents a semantic shift

2

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

In-distribution data Corrupted-in-distribution data
Model Acc (↑) ECE (↓) BS (↓) NLL (↓) Acc (↑) ECE (↓) BS (↓) NLL (↓)
- 1stack 0.72 0.0343 0.0381 0.8174 0.204 0.2796 0.0993 3.216
- 2stack 0.78 0.0315 0.0305 0.6441 0.207 0.2518 0.0969 3.158
- 3stack 0.87 0.0373 0.01907 0.4063 0.27 0.2534 0.0953 3.201
- 4stack 0.89 0.0562 0.01615 0.4019 0.25 0.4255 0.1087 3.677

Table 1: Comparing calibration Metrics of Resnet with
{1,2,3,4} stack models on CIFAR10 ID and CID. Best re-
sults marked in bold. For ECE, BS, NLL lower is better

from in-distribution (Yang et al., 2021; 2022; Zhang et al.,
2023; Liu et al., 2021; Hendrycks & Gimpel, 2018; Di-
nari & Freifeld, 2022) . However, there have been fewer
works that deal with detecting corrupted-ID, which repre-
sent a non-semantic shift w.r.t. ID, and are much harder
to detect (Liang et al., 2020). Some prior works utilize
corrupted-ID/covariate-shifted ID to better generalize on
OOD (Bai et al., 2023; Katz-Samuels et al., 2022), which
is difficult to obtain. The most relevant work that leverages
only training data is generalized-ODIN (G-ODIN) (Hsu
et al., 2020). It adds 1) a preprocessing layer that perturbs
the input image and 2) decomposes confidence score for bet-
ter OOD detection. However, the preprocessing might prove
costly/impractical on tinyML devices. Recent studies (Xia
& Bouganis, 2023; Jaeger et al., 2023) propose failure detec-
tion with a reject option, rejecting high-uncertainty samples
from both ID (potentially incorrect predictions) and OOD,
unlike traditional OOD detection which only separates ID
from OOD.

Early-exit networks Early-exit networks add intermediate
exits along the length of the base network thereby, provid-
ing avenues for reduction in average inference time (Teer-
apittayanon et al., 2016; Kaya et al., 2019; Huang et al.,
2017; Bonato & Bouganis, 2021; Ghanathe & Wilton, 2023;
Jazbec et al., 2024). Ghanathe & Wilton (2023) introduces
an early-exit architecture optimized for tinyML models. In
addition, it introduces the early-view assistance method, pri-
marily to mitigate network overthinking in neural networks
to boost accuracy. In contrast, we utilize the underlying prin-
ciple and develop a modified version of this method in our
work to principally create a diverse ensemble (Section 4).

3. Background and Problem formulation
Consider an in-distribution dataset SID = {xn, yn}Nn=1 of
size N where, xn and yn are the nth input sample and its cor-
responding true label respectively. A discriminative model
MΘ(x) learns parameters Θ on SID and outputs a class
posterior probability vector pΘ(y|x), which yields a pre-
dicted label ŷ. For a classification problem, ŷ ∈ {1, 2, ..L},
where L is the number of classes. Uncertainty quantification
methods endeavor to improve uncertainty estimation quality
of MΘ(x) on SID. Specifically, we want to calibrate the
model such that its predictive confidence (CMΘ

) is in sync
with its accuracy (AMΘ). A well-calibrated model will see a
commensurate drop in CMΘ as AMΘ drops. The predictive

confidence is given by, CMΘ
(x) = max

l∈{1,2,..,L}
pΘ(y = l|x)

Confidence-calibration is a well studied problem, and it
helps achieve synergy between the predicted probabilities
and ground truth correctness likelihood (Guo et al., 2017).
However, when MΘ is deployed in a real-world scenario, it
may encounter either 1) out-of-distribution data (SOOD) or
2) a corrupted/covariate-shifted version (SCID), due to envi-
ronmental/sensor variations (E.g., frost, noise, fog, rain etc.).
Unfortunately, we find that despite good uncertainty esti-
mation quality on SID, many uncertainty-aware networks
see a drop in quality and remain overconfident, particularly
for severely-corrupted SCID (Hsu et al., 2020). Interest-
ingly, we find that the model becomes less overconfident to
SCID as its size shrinks. This phenomenon is illustrated in
Table 1. We report the calibration metrics of Resnet (He
et al., 2016) on CIFAR10, with four model sizes ranging
from 1 to 4 residual stacks on both SID and SCID. For cal-
ibration metrics (ECE, BS, NLL), lower is better. More
details on calibration metrics and CIFAR10-CID can be
found in Section 5 and Appendix C. As seen, the 4stack
model with the highest model capacity is clearly the best on
SID. However, on SCID, it performs the worst, remaining
overconfident in the presence of corruptions, even outper-
formed by 1stack. In contrast, 2stack and 3stack model are
much better on SCID. This demonstrates that smaller mod-
els are less overconfident for corruption in inputs, leading
to better calibration on SCID.

The capabilities of smaller models can be harnessed
for better uncertainty estimation on SCID through early-
exit networks, as illustrated by prior research like EE-
ensemble (Qendro et al., 2021), which combines the pre-
dictions from multiple early-exits and final exit to form
an ensemble. For example, in our evaluations, we find
that on TinyImagenet-ID (Le & Yang, 2015) with Mo-
bilenetV2 (Howard et al., 2017), the negative log-likelihood
(NLL) of EE-ensemble is 26% lower than the popular Deep-
Ensemble (Lakshminarayanan et al., 2017), and 34% lower
on TinyImagenet-Corrupted (Hendrycks & Dietterich, 2019)
(lower is better). This showcases the crucial role of early-
exits in achieving higher quality uncertainty overall.

However, we find that EE-ensemble is resource-intensive
because it adds additional learning layers at the early-exits
to accommodate their varying learning capacities. For ex-
ample, adding two early-exits without additional learning
layers (say EE-0 and EE-1) after 1st and 2nd residual stack
of a 3-residual stack Resnet for CIFAR10 results in indi-
vidual accuracies of 0.602 and 0.707 at EE-0 and EE-1
respectively. This is significantly worse than the individual
accuracy of the final exit, 0.84, which in turn leads to poor
ensemble behavior. To address this, EE-ensemble uses early-
exits with additional dense/fully-connected layers, which
incurs a high memory overhead affecting practicality in

3

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

tinyML (OverheadEE-ensemble = 397K params compared to
OverheadQUTE = 8.2K params as shown in Section 4 & 6).
We present an alternative strategy to leverage the knowl-
edge of early-exits in ensemble-creation that is extremely
resource-efficient thereby enabling superior uncertainty esti-
mates on both SID and SCID, which allows us to reliably
detect accuracy-drops in the model due to SCID.

4. QUTE
A neural network (NN) like the one shown in Figure 1,
with depth D is composed of several blocks of linear/non-
linear operations (e.g., convolution, pooling) that are
stacked. The NN consists of D − 1 intermediate blocks
{fi(.)}D−1

i=1 ; f(.) = f1(.)◦f2(.)◦f3(.)....◦fD−1(.)◦fD(.)
and an output block fout(.). f0(.) is the input block. In the
base network, the network processes the input f0(.) through
each block fi(.) until layer D, ultimately producing predic-
tion pΘ(y|x) through output block fout(.).

Given a base NN (the grey blocks in Figure 1), we first create
K additional classification heads/output blocks {foutk}Kk=1

at the final exit (after fD) as shown in Figure 1. These
output blocks constitute the ensemble K. Next, we add K
early-exit blocks, {gθk}Kk=1 along the length of the base
network, which are used only during training for knowledge
distillation. A more intuitive view of QUTE is presented in
the Appendix. In Figure 1, K is set to D−1. In practice, K
is a hyperparameter that depends on computation/resource
budget and the required ensemble size |K|, where the ensem-
ble size is bounded above by the depth of the network. Thus,
{foutk}Kk=1 produces K predictions, where each foutk is
assisted in producing predictions by its corresponding early-
exit gθk using early-view assistance method.

K = {pϕ1
(y|x), pϕ2

(y|x), pϕ3
(y|x),, pϕK

(y|x)} (1)

Figure 2 illustrates the architecture of early-view assistance,
where a single final exit block foutk and its assisting early-
exit gθk is shown. As shown, we create an additional learn-
ing layer hϕk

(.) at the kth output block. An identical learn-
ing layer hθk(.) is also added at the kth early-exit. hϕk

with
parameters ϕk is responsible for assimilating knowledge
from the corresponding hθk with parameters θk. σ(.) is
the output activation (E.g., dense+softmax). hϕk

and hθk

are a single depthwise-convolution layer in our evaluations
owing to its low computation and memory demand. We en-
sure equal dimensionality between hϕk

and hθk by adding
a pointwise-convolution layer before hθk at all early-exits
(not shown in figure for brevity). Fundamentally, our aim
is to imbue the diverse predictive behaviors of early-exits
from different depths into the output blocks {foutk}Kk=1.

Training Unlike EE-ensemble, all output blocks of QUTE
have similar learning capacities since the input to all
{hϕk

}Kk=1 is fD of the base network. The output of hϕk
is

fD
aD−1

hϕk σ(.) pϕk
(y|x)fiai−1

hθk σ(.) pθk(y|x)

θk foutk

gθk

Figure 2: Early-view-assistance architecture. One assist-
ing early-exit gθk and corresponding early-view-assisted
exit foutk is shown. Early-exits weights θk are transferred/-
copied to hϕk

before each train batch, i.e., ϕk = θk

termed as early-view since it is assisted by the early-exit.
After attaching early-exits (EE) and early-view-assisted
(EV) exits to the untrained base network, all weights are
learned simultaneously during training. Unlike some prior
works (Lakshminarayanan et al., 2017) that use extra data
(e.g., adversarial samples), we only use the available train-
ing data. We use random data augmentation (E.g., random
rotation/flip/crop), a well-known method to improve model
robustness to corruptions to ensure fairness in accuracy-drop
detection experiments (Section 6.2). The EEs are trained
with a weighted-loss function, similar to previous stud-
ies (Kaya et al., 2019). Further, we assign a higher weighting
factor, wEVk

for losses at EV-exits to minimize the effect of
an overconfident fout (original output block). In addition,
we increase each wEVk

by δ such that wEVk
= wEVk−1

+ δ
to vary the influence each EV-exit has on the weights of
the shared base network, thereby promoting diversity. We
empirically determine that wEV0 = 3 and δ = 0.5 yields the
best results (see Appendix A.1 for details). During training,

1) Before each train batch, we copy weights of kth EE-exit
(hθk) into kth EV-exit (hϕk

) i.e., ϕk = θk. Thus, each
EV-exit iterates through a train batch with weights of the
EE-exit. Weight transfer is limited solely from hθk to hϕk

,
with no other layers involved.

2) After a train batch, the loss computed at an EV-exit is
w.r.t. the weights copied from EE, after which weights of
hϕk

are updated during backpropagation. However, before
the next train batch begins, we overwrite the weights of hϕk

by copying from EE. Therefore, the weights learnt by layers
before/after hϕk

always align with EE weights. Thus, this
does not affect convergence (see Figure 5 and Section 6.5).

L =

K∑
k=1

LEEk
+

K∑
k=1

LEVk
+ LEF (2)

LEEk
= τk · LCE LEVk

= wEVk
· LCE

The training objective reduces to minimizing Eqn 2, where
L is the total loss of QUTE, which is the sum of the losses
of EE, EV and final exits. LCE is the cross-entropy loss, and
LEF = LCE , which is loss of original final exit. LEEk

and
LEVk

are losses at the kth EE-exit and EV-exit respectively.

4

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

τk is the weighting applied to EE loss (Kaya et al., 2019).
wEVk

is the weighting applied to the kth EV-exit.

The weights of base network (only grey blocks in Figure 1)
are frozen for the last 10% of epochs while continuing
weight transfer, enabling isolated training of EV-exits to
foster increased diversity. In this way, the EE-knowledge
is transferred to the final exit(s) to obtain better uncertainty
estimation on SID/SCID. In contrast, without EV-assistance,
the various final exits risk learning the same predictive dis-
tribution, leading to poor ensemble behavior. We compare
the effectiveness of EV-assistance in Section 6.5.

Inference During inference, the resource-heavy EE-blocks
are removed from the model, leaving only the base network
and the lighter output blocks {foutk(.)}Kk=1. We also elimi-
nate the original output block fout due to its overconfident
behavior, which compromises calibration quality. The final
prediction (pΘ(y|x)) is obtained by calculating the mean of
all |K| prediction vectors of K.

pΘ(y|x) =
1

|K|

(K∑
k=1

pϕk
(y|x)

)
(3)

5. Evaluation Methodology
For our microcontroller (MCU) evaluations, we utilize two
types of boards.

1) Big-MCU: The STM32 Nucleo-144 development board
(STM32F767ZI) (STMicroelectronics, 2019) with 2MB
flash and 512KB SRAM, clocked at 216MHz with a typical
power consumption of 285mW. This board accommodates
high-resource baselines that require substantial memory and
processing power.

2) Small-MCU: The STM32 Nucleo-32 development board
(STM32L432KC) (STMicroelectronics, 2018) with 256KB
flash and 64KB RAM, clocked at 80MHz with a typical
power consumption of 25mW. This ultra-low-power device
better reflects our goal of deployment on smaller, energy-
efficient systems.

We evaluate QUTE in three settings: 1) Accuracy-drop/CID
detection, which monitors system performance over time to
detect gradual shifts and temporal degradation patterns (Sec-
tion 6.2), 2) Failure detection, which targets instance-level
identification of both misclassifications and OOD samples
(Section 6.3), and 3) uncertainty estimation quality (Sec-
tion 6.4). Since the focus of this work is to detect failures
reliably in-the-field, accuracy-drop and failure detection
experiments evaluate this capability.

Datasets and Models We evaluate QUTE on one audio
classification and three image classification tasks of dif-
fering complexities: 1) MNIST (LeCun et al., 1998) on a
4-layer CNN, 2) SpeechCommands (Warden, 2018) on a
4-layer depthwise-separable model (DSCNN) (Zhang et al.,

2017) for keyword spotting task, 3) CIFAR10 (Krizhevsky,
2009) on Resnet-8 (from MLPerf tiny benchmark suite (Ban-
bury et al., 2021)) and 4) TinyImagenet (Le & Yang, 2015)
on MobilenetV2 (Howard et al., 2017). While TinyIma-
geNet/MobileNetV2 isn’t a typical tinyML dataset/model,
we include it to show QUTE’s broader applicability.

CID datasets: For CID datasets, we use corrupted ver-
sions of ID i.e., MNIST-C (15 corruptions) (Mu & Gilmer,
2019), CIFAR10-C (19 corruptions) and TinyImagenet-C
(15 corruptions) (Hendrycks & Dietterich, 2019), with vari-
ous corruptions such as frost, noise, fog, blur, pixelate etc.
For corrupting SpeechCmd, we use the audiomentations
library (Jordal, 2024). We apply 11 types of corruptions
such as noise, air absorption, time masking/stretching to
obtain corrupted-SpeechCmd (denoted SpeechCmd-C).

OOD datasets: SpeechCommands has utterances of 35
words. Like Zhang et al. (2017), we train DSCNN
to recognize ten words and use the rest as OOD (de-
noted SpeechCmd-OOD). Furthermore, we use FashionM-
NIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011) as
OOD for MNIST and CIFAR10 respectively. More details
on models and datasets used can be found in Appendix A.1.

Placement of Early-exits The number of early-exits (K) is
dictated by the resource budget. There are only a handful
locations in a tinyML model where we can insert the early-
exits. Our strategy is to insert them at equally-spaced loca-
tions along the base network. For MNIST and SpeechCmd,
which both use 4-layer models, we insert two EEs after the
1st and 2nd layers. For Resnet-8 with 3 residual stacks, we
insert EEs after 1st and 2nd residual stacks. We insert 5 EEs
for MobilenetV2 at equally-spaced locations starting from
the input. A detailed analysis of the effect of number of
early-exits on UQ is provided in Appendix B.1.

Accuracy-drop detection Unlike with OOD data, correct
predictions may still occur on CID inputs. Therefore, we
focus on detecting accuracy-drop events caused by CID
inputs. We present a realistic mechanism with no additional
overhead that monitors confidence to detect a possible drop
in accuracy. We formulate this as a binary classification
problem. First, for each baseline we evaluate, we iterate over
only ID and obtain model predictions while computing the
moving average of accuracy of the past m predictions using
a sliding-window. The accuracy of the sliding-window is
denoted as ASW and the accuracy distribution thus obtained
is denoted as AID with mean µID and standard-deviation
σID respectively. In our empirical evaluations, we find
that m = 100 is reasonable. We then construct corrupted
datasets by appending ID with each corrupted-ID version.
Next, we iterate over these ID+CID datasets (one for each
type of corruption) using a sliding-window while computing
the moving average of confidence (CSW). A CID-detected
event corresponds to CSW < ρ, and a true positive event
occurs when CSW < ρ and ASW ≤ µID − 3 · σID, where

5

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

ρ is a user-defined threshold. We vary ρ from 0 to 1 in step
sizes of 0.1 and repeat the whole experiment. Appendix A.4
provides additional details. Finally, we report the average
area under precision-recall curve (AUPRC).

Failure detection Failure detection aims at rejecting both
ID misclassifications and OOD instances, as both indicate
a potential failure. To this end, we define two binary clas-
sification tasks: 1) ID✓| ID×, which separates correct pre-
dictions from incorrect ones within ID/CID samples, and
2) ID✓| OOD, which distinguishes correct predictions from
OOD. For the former, we use ID+CID datasets where er-
rors can arise from hard-to-classify ID samples or CID in-
puts, while for the latter, we use ID and OOD data. In
addition, (Xia & Bouganis, 2023) leverages uncertainty esti-
mation for failure detection, optimizing for a user-defined
threshold. However, since this threshold may vary in the
field depending on application requirements, we report the
threshold-independent Area Under the Receiver Operating
Characteristic curve (AUROC). Finally, (Xia & Bouganis,
2023) shows that Deep Ensembles (DEEP) achieve superior
performance on threshold-free metrics, making DEEP the
strongest baseline in our comparisons.

Uncertainty quantification For UQ, we report the class-
weighted F1 score instead of accuracy because its better for
imbalanced datasets, and two proper scoring metrics (Gneit-
ing & Raftery, 2007): Brier score (BS) (Brier, 1950), which
measures the accuracy of predicted probabilities and nega-
tive log-likelihood (NLL), which measures how close the
predictions are to the ground truth (see Appendix C). Also,
despite its documented unreliability in measuring uncer-
tainty quality (Nixon et al., 2019), we report expected cali-
bration error (ECE) (Guo et al., 2017) due to it popularity.
Appendix C discusses the limitations of ECE.

BASELINES

BASE: Unmodified implementations of models evaluated.

Monte Carlo Dropout (MCD) (Gal & Ghahramani,
2016): computes mean of prediction vectors from K in-
ference passes by activating dropout. For fairness, dropout
and EE locations are same. We use a dropout rate of 0.1,
0.05, 0.2, 0.2 for MNIST, SpeechCmd, CIFAR10 and Tiny-
Imagenet respectively.

Deep Ensembles (DEEP) (Lakshminarayanan et al.,
2017): explicit ensemble of models with same base model
architecture but with different random weight initializations.
The number of ensemble members = K.

Early-exit Ensembles (EE-ensemble) (Qendro et al.,
2021): attaches multiple early-exits with additional FC-
layers. The size of the FC layers is chosen such that the
model delivers the best uncertainty estimation. All early-
exit prediction vectors including that of the final exit are
averaged to get the final ensemble prediction. We place the

early-exits at the same locations as QUTE. Ablation studies
with EE-ensemble are presented in Appendix B.2.

HYDRA (Tran et al., 2020): uses the same architecture
as QUTE. Instead of early-exit distillation like QUTE, it
employs ensemble distillation, capturing unique predictive
behavior of individual ensemble members.

Generalized-ODIN (G-ODIN) (Hsu et al., 2020): a general-
ized OOD detection method that decomposes the confidence
score and introduces a preprocessing layer that perturbs the
inputs for better OOD detection. The perturbation magni-
tude is determined on a small held-out validation set.

6. Results
First, we evaluate our MCU implementations in Section 6.1
on both Small-MCU and Big-MCU to showcase QUTE’s
resource efficiency and infeasibility of prior methods on
ultra-low-power devices. QUTE achieves an average 27%
latency reduction on Big-MCU compared with the best
performing baseline with 58% and 26% smaller mod-
els compared to EE-ensemble and DEEP respectively. On
Small-MCU, high-resource prior methods cannot even fit
on CIFAR10, further underscoring QUTE’s suitability for
constrained environments. Next, we demonstrate QUTE’s
superiority over all baselines in detecting accuracy-drop
events due to CID in Section 6.2. On failure detection (Sec-
tion 6.3), QUTE consistently outperforms prior methods
in distinguishing between ID✓| ID× and is competitive
on ID✓| OOD with other baselines, even outperforming
specialized OOD detectors like G-ODIN on MNIST and
SpeechCmd (Section 6.3). Next, we compare QUTE’s
calibration in Section 6.4, demonstrating that QUTE pre-
dictions are consistently well-calibrated, especially on tiny-
sized models with the 59% lower model parameters on
average compared to EE-ensemble. In addition, we conduct
an ablation study to assess the effectiveness of EV-assistance
method and its effect on model convergence (Section 6.5).
Finally, Sections 6.6 and 6.7 demonstrate QUTE’s supe-
riority in uncertainty estimation compared to temperature
scaling (TS) (Guo et al., 2017; Rahaman et al., 2021) and
single-pass deterministic methods (Charpentier et al., 2020)
respectively. Additional ablation studies are presented in
Appendix B.

6.1. MCU Fit: QUTE vs Resource-Heavy methods

We evaluate MCU implementations of QUTE on two MCUs
of different sizes. Since the primary objective of TinyML
systems is to minimize the energy-per-prediction (Ghanathe
& Wilton, 2023), our target platform is the Small-MCU, as
the base network fits comfortably on this smaller device.

We compare QUTE against the two most relevant baselines:
EE-ensemble and DEEP. We exclude MCD due to its re-

6

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

sp-cmd cfr10
0

200

400

600

Big-MCU

(a) Size (KB)

sp-cmd cfr10
0

50

100

Big-MCU

(b) Latency (ms)

sp-cmd cfr10
0

50

100

150

200

O
O
M

O
O
M

Small-MCU

(c) Size (KB)

sp-cmd cfr10
0

100

200

300

400

O
O
M

O
O
M

BASE

EE

DEEP

QUTE

Small-MCU

(d) Latency (ms)

Figure 3: Microcontroller results for SpeechCmd (sp-cmd), CIFAR10 (cfr10) on Big-MCU and Small-MCU (lower is
better). EE-ensemble and DEEP on CIFAR10 do not fit i.e., out-of-memory (OOM)

Model 1stack 2stack 3stack 4stack QUTE

Fog 30% 24% 18% 11% 25%
Gaussian Noise 7% -1.2% 12% 13% 20%

Table 2: Percentage reduction in average confidence for
Fog (high epistemic) and Gaussian Noise (high aleatoric)
corruptions in Resnet{1,2,3,4} and Resnet- QUTE.

liance on a specialized dropout module (Ahmed et al., 2023),
which is impractical on MCUs. We also exclude HYDRA
because it is often suboptimal, as shown in the following
sections. Our evaluation uses CIFAR10 and SpeechCom-
mands, as TinyImageNet/MobileNetV2 exceeds tinyML
device limits. On Big-MCU, QUTE achieves 31% and
47% latency reductions over EE-ensemble and DEEP, re-
spectively, and maintains accuracy parity with both, even
with 58% and 26% smaller models. On Small-MCU,
both EE-ensemble and DEEP do not fit on the device for
CIFAR10; EE-ensemble model size exceeds Small-MCU’s
on-device memory by 270KB, whereas DEEP exceeds by
1.9KB. Notably, EE-ensemble has the highest peak RAM
usage than DEEP and QUTE due to its need to store large
intermediate feature maps during early-exit computation. In
contrast, DEEP processes each ensemble member sequen-
tially as there is no parallel compute capability on MCUs.
This characteristic allows single-forward-pass methods like
QUTE and EE-ensemble to achieve reduced latency, espe-
cially as the ensemble size increases. Appendix B.3 delves
into more details. These results underscore that the novelty
of QUTE lies in its exceptional resource efficiency, making
it a practical solution for deploying UQ or model monitor-
ing mechanisms on ultra-low-power MCUs, especially in
scenarios where other approaches may be infeasible. This
is crucial for the extreme edge because sometimes the alter-
native is no UQ/monitoring.

6.2. Accuracy-drop detection

As described in Section 5, we monitor for a drop in con-
fidence to detect accuracy-drop events in a model due to
CID. We also explore alternative uncertainty measures like
predictive entropy. However, we choose confidence be-

cause it produces similar results without extra processing,
a practical advantage for tinyML. Figure 4 reports AUPRC
averaged over all corruptions for all datasets. QUTE consis-
tently outperforms all baselines in detecting accuracy-drops
caused due to CID across all datasets, which is crucial for
maintaining model reliability in deployment. Our empirical
evaluations show that early-exits (EE) are more adept at
capturing epistemic uncertainty whereas deeper layers are
better at capturing aleatoric uncertainty, as illustrated by
Table 2. Table 2 reports the percentage reduction in aver-
age prediction confidence of models of different sizes on
fog (epistemic) and gaussian noise (aleatoric) corruptions
compared to the average confidence on CIFAR10-ID. By
combining knowledge from EE at the final exits, QUTE
exhibits reduced confidence on both types of corruptions,
thereby enhancing its accuracy-drop detection capabilities.

MCD performs poorly in all cases either due to reduced
model capacity (due to dropout) or due to extreme cali-
bration. For example, on TinyImagenet-ID, MCD with an
accuracy of 0.34 has a median confidence value of 0.345
across all predictions. However, on TinyImagenet-CID, the
overparameterized nature of modern neural networks does
not allow the median confidence of MCD to drop any fur-
ther than 0.27 i.e., a drop of 0.075, which is not discernible
enough to detect drop in accuracy. This is observed with EE-
ensemble too for larger model sizes. In contrast, QUTE’s
median confidence on TinyImagenet-ID is 0.69 and the
average median confidence on CID is 0.57, which helps
create a much clearer distinction between ID and CID. EE-
ensemble performs comparably to QUTE for tiny/medium-
sized models. However, for large models, the additional
learning layers added to balance the learning capacities of
all exits cause the early-exits to function like conventional
deep networks. Therefore, EE-ensemble becomes overcon-
fident for severe corruptions, which results in a 8.9% drop
in performance on TinyImagenet-C. In contrast, the early-
view-assistance method allows QUTE to retain early-exit
knowledge in its output blocks across different model sizes,
enabling it to outperform all baselines on CID detection
on all datasets/models. The performance of QUTE and
EE-ensemble (especially on tiny-sized models), highlight

7

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

AUPRC (↑) MNIST-C SpeechCmd-C
- BASE 0.54 0.52
- MCD 0.45 0.56
- DEEP 0.55 0.57
- EE-Ensemble 0.63 0.58
- G-ODIN 0.48 0.37
- HYDRA 0.53 0.51
- QUTE 0.63 0.61

(a) AUPRC MNIST-C & SpeechCmd-C

2 4

0.2

0.4

0.6

0.8

1 2 3 4 5

Severity

(b) AUPRC CIFAR10-C

2 4
0

0.2

0.4

0.6

0.8

1 2 3 4 5

Severity

BASE
MCD
DEEP
EE
G-ODIN
HYDRA
QUTE

(c) AUPRC TinyImagenet-C

Figure 4: Accuracy-drop detection results. AUPRC is reported for all evaluated baselines (higher is better)

AUROC ID | ID× ID | OOD
Mnist SpCmd cfr10 Mnist SpCmd cfr10

-BASE 0.75 0.90 0.84 0.07 0.9 0.88
-MCD 0.74 0.89 0.87 0.48 0.89 0.89
-DEEP 0.85 0.91 0.86 0.78 0.91 0.92
-EE-ensemble 0.85 0.90 0.85 0.85 0.90 0.90
-G-ODIN 0.72 0.74 0.83 0.4 0.74 0.95
-HYDRA 0.81 0.90 0.83 0.71 0.9 0.90
-QUTE 0.87 0.91 0.86 0.84 0.91 0.91

Table 3: Failure detection experiments

the utility of early-exit knowledge in detecting corruptions.
Similarly, G-ODIN remains overconfident on CID, and is
surpassed by most baselines on all corrupted datasets. This
suggests that general OOD-detectors are not automatically
effective for CID detection, consistent with previous find-
ings that OOD detectors find it hard to detect non-semantic
shifts (Hsu et al., 2020). Further, HYDRA is consistently
subpar at accuracy-drop detection, often being outperformed
even by BASE. This highlights HYDRA’s need for larger
classification heads with more parameters to fully integrate
ensemble-knowledge, consistent with the original paper’s
methodology. Contrarily, QUTE’s early-exit distillation
method proves effective in detecting corruptions compared
to ensemble distillation mechanisms.

6.3. Failure detection

Table 3 reports the AUROC for failure detection experi-
ments for ID | ID× and ID | OOD. As seen, for ID |
ID×, QUTE outperforms all baselines on MNIST and
SpeechCmd. MCD performs slightly better on CIFAR10,
likely due to the higher number of epistemic uncertainty-
inducing corruptions present in CIFAR10-C, such as blur
and digital distortions. This observation aligns with prior
work highlighting MCD’s strength in capturing instance-
level epistemic uncertainties (Kendall & Gal, 2017). In
contrast, QUTE effectively captures both epistemic and
aleatoric uncertainties, resulting in overall superior perfor-
mance across datasets. For ID | OOD, QUTE outper-
forms all baselines on SpeechCmd, and is a close second on
MNIST. Surprisingly, G-ODIN, a specialized OOD detec-
tor, is poor on MNIST and SpeechCmd, even outperformed
by BASE. Further analysis revealed that G-ODIN is under-

confident on these ID-datasets and over-confident on OOD.
As an ablation study, we increased the number of training
epochs of G-ODIN by 30 epoch, which resulted a 55% im-
provement on ID | OOD on MNIST. Contrarily, on a larger
model, Resnet-8 on CIFAR10, G-ODIN’s performance no-
tably improves on ID | OOD, consistent with previous
findings. This may suggest the need to rethink OOD detec-
tion with extremely tiny models. These results showcase
QUTE’s versatility/efficacy in detecting both CID and OOD
data.

6.4. Uncertainty quantification

Table 4 reports the calibration metrics for all datasets we
evaluate. QUTE outperforms all baselines on tiny-sized
models i.e., MNIST and SpeechCmd, and is competitive for
medium and large models i.e., CIFAR10 and TinyImagenet
despite using significantly lower resources. All methods
perform better than BASE, except MCD on MNIST and
SpeechCmd. Further inquiry revealed that applying dropout
during inference on the extremely tiny models takes away
from its model capacity thereby leading to drop in accuracy
and poor calibration. DEEP showcases good calibration on
all datasets owing to its larger model capacity. However,
both MCD and DEEP are impractical for tinyML because
they both require multiple inference passes or specialized
hardware. In contrast, QUTE provides comparable uncer-
tainty estimates in a single forward pass with 53% lower
model sizes on average compared to DEEP.

QUTE also outperforms EE-ensemble, the most relevant
prior work, across all datasets with models that are, on aver-
age, 59% smaller, except on larger datasets and models like
TinyImagenet on MobileNetV2. Since QUTE’s primary
focus is resource efficiency, the limited parameters in its out-
put blocks—restricted to a single depthwise convolutional
(CONV) layer—can constrain calibration performance rela-
tive to high-resource methods like DEEP and EE-ensemble.
To normalize the comparison, we enhanced the QUTE ar-
chitecture with additional learning layers at each output
block, creating QUTE +. For Resnet-8 on CIFAR10, we
added two depthwise-separable CONV layers, while for
MobileNetV2 on TinyImageNet, we included an additional

8

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

Model F1 (↑) BS (↓) NLL (↓) ECE (↓)
MNIST
-BASE 0.910±0.002 0.013±0.000 0.292±0.006 0.014±0.001
-MCD 0.886±0.004 0.018±0.000 0.382±0.004 0.071±0.006
-DEEP 0.931±0.005 0.010±0.000 0.227±0.002 0.034±0.004
-EE-ensemble 0.939±0.002 0.011±0.000 0.266±0.005 0.108±0.002
-HYDRA 0.932±0.006 0.010±0.000 0.230±0.012 0.014±0.005
-QUTE 0.941±0.004 0.009±0.000 0.199±0.010 0.026±0.003

SpeechCmd
-BASE 0.923±0.007 0.010±0.000 0.233±0.016 0.026±0.001
-MCD 0.917±0.006 0.011±0.000 0.279±0.013 0.048±0.002
-DEEP 0.934±0.008 0.008±0.000 0.205±0.012 0.034±0.006
-EE-ensemble 0.926±0.002 0.009±0.000 0.226±0.009 0.029±0.001
-HYDRA 0.932±0.005 0.008±0.000 0.203±0.016 0.018±0.004
-QUTE 0.933±0.006 0.008±0.000 0.202±0.016 0.018±0.001

CIFAR10
-BASE 0.834±0.005 0.023±0.000 0.523±0.016 0.049±0.003
-MCD 0.867±0.002 0.019±0.000 0.396±0.003 0.017±0.005
-DEEP 0.877±0.003 0.017±0.000 0.365±0.015 0.015±0.003
-EE-ensemble 0.854±0.001 0.021±0.000 0.446±0.011 0.033±0.001
-HYDRA 0.818±0.004 0.026±0.000 0.632±0.017 0.069±0.001
-QUTE 0.858±0.001 0.020±0.000 0.428±0.019 0.025±0.003
-QUTE + 0.878±0.003 0.017±0.000 0.369±0.008 0.026±0.001

TinyImagenet
-BASE 0.351±0.005 0.004±0.000 5.337±0.084 0.416±0.003
-MCD 0.332±0.004 0.003±0.000 2.844±0.028 0.061±0.005
-DEEP 0.414±0.006 0.003±0.000 3.440±0.049 0.115±0.003
-EE-ensemble 0.430±0.005 0.003±0.000 2.534±0.046 0.032±0.006
-HYDRA 0.376±0.004 0.004±0.000 3.964±0.036 0.328±0.004
-QUTE 0.395±0.014 0.004±0.000 3.700±0.123 0.282±0.009
-QUTE + 0.381±0.010 0.003±0.000 2.757±0.044 0.122±0.008

Table 4: Calibration Metrics for all baselines on ID data.
For F1, higher is better, and for BS and NLL, lower is better.
The best results are marked in bold. All results are mean ±
std-dev for 3 independent splits of ID test data.

dense (fully connected) layer to form QUTE +. As seen in
Table 4, F1 score of QUTE + exceeds that of DEEP on CI-
FAR10, however, it slightly degrades on TinyImagenet. Fur-
ther analysis revealed that since the base network is trained
simultaneously with all early-exits (EE) and EV-exits, the
weights of the shared base network is negatively impacted
since the training routine tries to optimize for all exits. In
contrast, EE-ensemble method employs only half as many
exits (only EEs) compared to QUTE, and the EE’s regular-
ization effect helps network accuracy (Teerapittayanon et al.,
2016). Appendix B.1 studies the effect of ensemble size on
QUTE’s calibration performance. Nevertheless, QUTE +
significantly improves calibration, the primary focus of this
work, outperforming all baselines on BS and achieving NLL
on par with the top-performing method. These results indi-
cate that, in an unconstrained setting, QUTE can achieve
calibration performance comparable to high-resource meth-
ods. Additionally, we assess the effectiveness of QUTE’s
early-exit distillation technique by comparing against HY-
DRA, which utilizes ensemble-distillation. While HYDRA’s
lightweight classification heads (similar to QUTE) capture
ensemble knowledge in tiny models, they struggle as model
size increases, leading to reduced accuracy and poor cali-
bration, even underperforming BASE on CIFAR10. This
reveals HYDRA’s reliance on larger classification heads
for effective ensemble integration as dicussed before. Con-
trarily, QUTE’s early-exit distillation method consistently
proves effective across across diverse models and datasets.

Figure 5: Batch-loss at EV-0 for CIFAR10 on Resnet-8

6.5. Effectiveness of EV-assistance method and its effect
on convergence

To investigate the effect of the early-view (EV) assistance
method on ensemble quality, we train non-EV versions of
QUTE i.e., the same architecture (with early-exits) except
without the weight transfer mechanism. Table 5 reports the
calibration metrics for both EV and non-EV versions for
CIFAR10 and TinyImagenet. As shown, EV-assistance has
a massive influence on improving calibration, and improves
the network accuracy on TinyImagenet by 8%. Also, we find
that the ability of non-EV versions to detect accuracy-drop
events reduces by 15% on average compared to EV-versions.
These results show that the notably lower NLL obtained
with EV-assistance (5% lower on CIFAR10 and 19% lower
on TinyImagenet) not only improves uncertainty estimates,
but it also proves crucial in both CID and OOD detection.
In addition, we investigate the effect of weight transfer on
model convergence. Figure 5 plots the loss after each train-
batch at one of the EV-blocks of Resnet-8 on CIFAR10. As
seen, model convergence is not affected because the weight
transfer mechanism is designed such that the loss at EV-
exit is always computed w.r.t. to the copied weights (see
Section 4). In essence, EV-assistance uses the EE-weights to
extract and reemphasize the EE features at the final exit(s).

6.6. Comparison with Temperature scaling

Temperature scaling (TS) (Guo et al., 2017) is a simple post-
training calibration technique that applies a linear scaling
factor to logits (pre-softmax) to mitigate model overcon-
fidence. Table 6 and Table 7 present the calibration and
accuracy-drop detection results, respectively, for TS ver-
sions of BASE (BASE-TS) and QUTE (QUTE-TS). For
QUTE-TS, the same architecture as QUTE is used, but
without weight transfer. We employed the best-performing
pool-then-calibrate configuration from (Rahaman et al.,
2021), which applies temperature scaling to ensembles to
obtain QUTE-TS. As the results show, QUTE consistently
outperforms BASE-TS on both calibration and accuracy-
drop detection. However, despite improving calibration in
some scenarios, QUTE-TS performs worse than QUTE on
accuracy-drop detection, particularly with tiny datasets such
as MNIST-C and SpeechCmd-C. A deeper analysis revealed

9

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

Model F1 (↑) BS (↓) NLL (↓)
EV no-EV EV no-EV EV no-EV

CIFAR10 0.858±0.001 0.858±0.000 0.0205±0.000 0.0206±0.000 0.435±0.007 0.459±0.006
TinyImagenet 0.380±0.011 0.35±0.004 0.0043±7.2E-5 0.0046±5.7E-5 3.813±0.105 4.743±0.111

Table 5: Effectiveness of early-view assistance. Results averaged over 3 independent training runs.
Model F1 (↑) BS (↓) NLL (↓)
MNIST
- BASE-TS 0.937±0.002 0.009±0.000 0.203±0.005
- QUTE-TS 0.942±0.001 0.008±0.000 0.191±0.005
- QUTE 0.941±0.004 0.009±0.000 0.199±0.010
SpeechCmd
- BASE-TS 0.923±0.007 0.009±0.000 0.229±0.017
- QUTE-TS 0.926±0.006 0.009±0.000 0.233±0.010
- QUTE 0.933±0.006 0.008±0.000 0.202±0.016
CIFAR10
- BASE-TS 0.834±0.000 0.023±0.000 0.493±0.000
- QUTE-TS 0.852±0.002 0.021±0.000 0.444±0.013
- QUTE 0.858±0.001 0.020±0.000 0.428±0.019

Table 6: Calibration with temperature scaling (TS) on ID

AUPRC (↑) MNIST-C SpeechCmd-C CIFAR10-C (Severity 1 to 5)
- BASE-TS 0.47 0.52 0.30, 0.42, 0.38, 0.50, 0.61
- QUTE-TS 0.52 0.53 0.26, 0.45, 0.51, 0.65, 0.76
- QUTE 0.63 0.61 0.30, 0.47, 0.52, 0.65, 0.78

Table 7: Accuracy-drop detection with temperature-scaling

that QUTE-TS tends to be overconfident for certain cor-
ruptions. For instance, under fog corruption on MNIST-C,
QUTE-TS exhibits an overconfident behavior with a me-
dian confidence of 0.99, while QUTE maintains a much
lower confidence of 0.51, leading to superior accuracy-drop
detection capability.

6.7. Comparison with single-pass deterministic methods

Postnets (PostN) (Charpentier et al., 2020) is the most rele-
vant single-pass deterministic method compared to QUTE,
which uses normalizing flows to predict posterior distribu-
tion of any input sample with no additional memory over-
head. We evaluate PostN on MNIST and CIFAR10 by
substituting the encoder network architectures with the ones
used in our evaluations. We use identical hyperparameter
settings of (Charpentier et al., 2020) and train for same num-
ber of epochs as in our evaluations but with early stopping.
Table 8 reports the calibration metrics for PostN and QUTE.
Since PostN don’t necessarily focus on accuracy, we found
that MNIST-PostN needed a 50% increase in number of
epochs to even surpass the accuracy of MNIST-BASE. We
report this result. For CIFAR10, we found that early stop-
ping halted the training, and report those results. As seen,
QUTE consistently outperforms PostN on all metrics on
both datasets, making QUTE a more efficient choice for
resource-constrained environments.

7. Conclusion and Discussion
Uncertainty quantification is essential for model monitor-
ing in tinyML, yet many prior works fail to address the

Model F1 (↑) BS (↓) NLL (↓)
MNIST-PostN 0.92 0.012 0.286
MNIST-QUTE 0.94 0.009 0.199
CIFAR-PostN 0.84 0.022 0.462
CIFAR-QUTE 0.858 0.020 0.428

Table 8: Calibration comparison with Postnets on ID

resource constraints inherent in this domain. We propose
a novel resource-efficient ensemble architecture for uncer-
tainty estimation that is optimized for tinyML. At the core of
our methodology is our finding that model overconfidence
decreases with its size. We leverage the better uncertainty es-
timation quality of early-exits (EE) by injecting EE weights
into the multiple lightweight classification heads created
at the output. QUTE provides reliable uncertainty esti-
mates in a single forward pass with 59% smaller models
on average and a 31% average reduction in latency on
low-power MCUs. Furthermore, QUTE effectively distills
EE knowledge into the final exits, enabling it to capture
both aleatoric and epistemic uncertainties more effectively.
This capability leads to superior performance in detecting
accuracy-drop events (corruptions) across a diverse range
of datasets and model complexities. QUTE serves as an ex-
cellent and cost-effective accuracy-monitoring mechanism
for field-deployed models.

Limitations/Discussions The ensemble size (K) is restricted
by the depth of the base network, which may not pro-
vide uncertainty estimates of sufficient quality for a given
safety-critical application. In addition, we find that in-
creasing K beyond a certain point negatively influences
the shared base network, leading to degradation in calibra-
tion (ablation study in Appendix B.1). Furthermore, while
QUTE achieves the best calibration on tiny-sized models,
it requires additional learning layers on large models and
datasets. Alternatively, methods that improve early-exit cal-
ibration (Jazbec et al., 2024) could potentially improve ef-
fectiveness of QUTE’s EV-assistance. Interestingly, we ob-
serve that excessively increasing EV-assistance, such as by
raising the depth multiplier in QUTE ’s output blocks, nega-
tively impacts accuracy despite improving calibration. How-
ever, its worth noting that the training times with QUTE are
higher compared to other methods (except HYDRA) due
to weight transfer between train-batches. Finally, despite
QUTE’s versatility/effectiveness in OOD detection, special-
ized OOD detectors should be considered, especially for
large models.

10

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

References
Ahmed, S. T., Danouchi, K., Münch, C., Prenat, G.,

Anghel, L., and Tahoori, M. B. Spindrop: Dropout-based
bayesian binary neural networks with spintronic imple-
mentation. IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, 13(1):150–164, 2023. doi:
10.1109/JETCAS.2023.3242146.

Ahmed, S. T., Hefenbrock, M., and Tahoori, M. B. Tiny
deep ensemble: Uncertainty estimation in edge ai acceler-
ators via ensembling normalization layers with shared
weights, 2024. URL https://arxiv.org/abs/
2405.05286.

Antoran, J., Allingham, J., and Hernández-Lobato, J. M.
Depth uncertainty in neural networks. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 10620–10634. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
781877bda0783aac5f1cf765c128b437-Paper.
pdf.

Bai, H., Canal, G., Du, X., Kwon, J., Nowak, R., and Li,
Y. Feed two birds with one scone: Exploiting wild data
for both out-of-distribution generalization and detection,
2023.

Baier, L., Schlör, T., Schöffer, J., and Kühl, N. Detect-
ing concept drift with neural network model uncertainty,
2022.

Banbury, C. R., Reddi, V. J., Torelli, P., Holleman, J., Jef-
fries, N., Király, C., Montino, P., Kanter, D., Ahmed, S.,
Pau, D., Thakker, U., Torrini, A., Warden, P., Cordaro,
J., Guglielmo, G. D., Duarte, J. M., Gibellini, S., Parekh,
V., Tran, H., Tran, N., Niu, W., and Xu, X. Mlperf
tiny benchmark. CoRR, abs/2106.07597, 2021. URL
https://arxiv.org/abs/2106.07597.

Bifet, A. and Gavalda, R. Learning from time-changing
data with adaptive windowing. In Proceedings of the
2007 SIAM international conference on data mining, pp.
443–448. SIAM, 2007.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural network. In International
conference on machine learning, pp. 1613–1622. PMLR,
2015.

Bonato, V. and Bouganis, C.-S. Class-specific early exit
design methodology for convolutional neural networks.
Applied Soft Computing, 107:107316, 2021. ISSN 1568-
4946. doi: https://doi.org/10.1016/j.asoc.2021.107316.
URL https://www.sciencedirect.com/
science/article/pii/S1568494621002398.

Brier, G. W. Verification of forecasts expressed in terms of
probability. Monthly weather review, 78(1):1–3, 1950.

Charpentier, B., Zügner, D., and Günnemann, S. Posterior
network: Uncertainty estimation without ood samples
via density-based pseudo-counts. Advances in neural
information processing systems, 33:1356–1367, 2020.

Deng, D., Chen, G., Yu, Y., Liu, F., and Heng, P.-A. Uncer-
tainty estimation by fisher information-based evidential
deep learning. In International Conference on Machine
Learning, pp. 7596–7616. PMLR, 2023.

Dinari, O. and Freifeld, O. Variational- and metric-based
deep latent space for out-of-distribution detection. In
Cussens, J. and Zhang, K. (eds.), Proceedings of the
Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, volume 180 of Proceedings of Machine
Learning Research, pp. 569–578. PMLR, 01–05 Aug
2022. URL https://proceedings.mlr.press/
v180/dinari22a.html.

Ferianc, M. and Rodrigues, M. Mimmo: Multi-input mas-
sive multi-output neural network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 4563–4568, June
2023.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. Learning
with drift detection. In Advances in Artificial Intelligence–
SBIA 2004: 17th Brazilian Symposium on Artificial In-
telligence, Sao Luis, Maranhao, Brazil, September 29-
Ocotber 1, 2004. Proceedings 17, pp. 286–295. Springer,
2004.

Ghanathe, N. P. and Wilton, S. T-recx: Tiny-resource effi-
cient convolutional neural networks with early-exit. In
Proceedings of the 20th ACM International Conference
on Computing Frontiers, pp. 123–133, 2023.

Gneiting, T. and Raftery, A. E. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
statistical Association, 102(477):359–378, 2007.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J.,
Lakshminarayanan, B., Dai, A. M., and Tran, D. Training
independent subnetworks for robust prediction, 2021.

11

https://arxiv.org/abs/2405.05286
https://arxiv.org/abs/2405.05286
https://proceedings.neurips.cc/paper_files/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://arxiv.org/abs/2106.07597
https://www.sciencedirect.com/science/article/pii/S1568494621002398
https://www.sciencedirect.com/science/article/pii/S1568494621002398
https://proceedings.mlr.press/v180/dinari22a.html
https://proceedings.mlr.press/v180/dinari22a.html

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks, 2018.

Hernández-Lobato, J. M. and Adams, R. P. Probabilistic
backpropagation for scalable learning of bayesian neural
networks, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hsu, Y.-C., Shen, Y., Jin, H., and Kira, Z. Generalized
odin: Detecting out-of-distribution image without learn-
ing from out-of-distribution data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10951–10960, 2020.

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L.,
and Weinberger, K. Q. Multi-Scale Dense Networks for
Resource Efficient Image Classification. arXiv e-prints,
art. arXiv:1703.09844, March 2017.

Jaeger, P. F., Lüth, C. T., Klein, L., and Bungert, T. J. A
call to reflect on evaluation practices for failure detection
in image classification, 2023. URL https://arxiv.
org/abs/2211.15259.

Jazbec, M., Allingham, J., Zhang, D., and Nalisnick, E. To-
wards anytime classification in early-exit architectures by
enforcing conditional monotonicity. Advances in Neural
Information Processing Systems, 36, 2024.

Jordal, I. Audiomentations, 2024. URL https://
github.com/iver56/audiomentations. Ver-
sion 0.32.0.

Katz-Samuels, J., Nakhleh, J., Nowak, R., and Li, Y. Train-
ing ood detectors in their natural habitats, 2022.

Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep net-
works: Understanding and mitigating network overthink-
ing. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 3301–3310. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/kaya19a.html.

Kendall, A. and Gal, Y. What uncertainties do we
need in bayesian deep learning for computer vision?
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
2650d6089a6d640c5e85b2b88265dc2b-Paper.
pdf.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Sim-
ple and scalable predictive uncertainty estimation using
deep ensembles. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6405–6416, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability
of out-of-distribution image detection in neural networks,
2020.

Liu, W., Wang, X., Owens, J. D., and Li, Y. Energy-based
out-of-distribution detection, 2021.

Malinin, A. and Gales, M. Predictive uncertainty estima-
tion via prior networks. Advances in neural information
processing systems, 31, 2018.

Malinin, A., Mlodozeniec, B., and Gales, M. Ensemble
distribution distillation. arXiv preprint arXiv:1905.00076,
2019.

Meronen, L., Trapp, M., Pilzer, A., Yang, L., and Solin, A.
Fixing overconfidence in dynamic neural networks, 2023.
URL https://arxiv.org/abs/2302.06359.

Mu, N. and Gilmer, J. Mnist-c: A robustness benchmark for
computer vision, 2019.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H., and
Gal, Y. Deep deterministic uncertainty: A new simple
baseline. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24384–
24394, 2023.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

12

https://arxiv.org/abs/2211.15259
https://arxiv.org/abs/2211.15259
https://github.com/iver56/audiomentations
https://github.com/iver56/audiomentations
https://proceedings.mlr.press/v97/kaya19a.html
https://proceedings.mlr.press/v97/kaya19a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://arxiv.org/abs/2302.06359

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., and
Tran, D. Measuring calibration in deep learning. In CVPR
workshops, volume 2, 2019.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? evalu-
ating predictive uncertainty under dataset shift, 2019.

Qendro, L., Campbell, A., Lio, P., and Mascolo, C. Early
exit ensembles for uncertainty quantification. In Machine
Learning for Health, pp. 181–195. PMLR, 2021.

Rahaman, R. et al. Uncertainty quantification and deep
ensembles. Advances in Neural Information Processing
Systems, 34:20063–20075, 2021.

Sensoy, M., Kaplan, L., and Kandemir, M. Evidential deep
learning to quantify classification uncertainty. Advances
in neural information processing systems, 31, 2018.

STMicroelectronics. STM32L432KC Datasheet: Ultra-low-
power Arm Cortex-M4 32-bit MCU+FPU, 100DMIPS,
up to 256KB Flash, 64KB SRAM, USB FS, analog, audio,
2018. URL https://www.st.com/resource/
en/datasheet/stm32l432kc.pdf.

STMicroelectronics. STM32F767ZI Datasheet: ARM
Cortex-M7 Microcontroller with 512 KB Flash, 216
MHz CPU, ART Accelerator, FPU, and Chrom-ART
Accelerator, 2019. URL https://www.st.com/
resource/en/datasheet/stm32f767zi.pdf.

Tang, X., Yang, K., Wang, H., Wu, J., Qin, Y., Yu, W., and
Cao, D. Prediction-uncertainty-aware decision-making
for autonomous vehicles. IEEE Transactions on Intel-
ligent Vehicles, 7(4):849–862, 2022. doi: 10.1109/TIV.
2022.3188662.

Teerapittayanon, S., McDanel, B., and Kung, H. Branchynet:
Fast inference via early exiting from deep neural net-
works. In 2016 23rd International Conference on Pat-
tern Recognition (ICPR), pp. 2464–2469, 2016. doi:
10.1109/ICPR.2016.7900006.

Teye, M., Azizpour, H., and Smith, K. Bayesian uncertainty
estimation for batch normalized deep networks, 2018.

Tran, L., Veeling, B. S., Roth, K., Swiatkowski, J., Dillon,
J. V., Snoek, J., Mandt, S., Salimans, T., Nowozin, S.,
and Jenatton, R. Hydra: Preserving ensemble diversity
for model distillation. arXiv preprint arXiv:2001.04694,
2020.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In International conference on machine
learning, pp. 9690–9700. PMLR, 2020.

Vargas, J., Alsweiss, S., Toker, O., Razdan, R., and Santos,
J. An overview of autonomous vehicles sensors and their
vulnerability to weather conditions. Sensors, 21(16):5397,
2021.

Warden, P. Speech commands: A dataset for limited-
vocabulary speech recognition. CoRR, abs/1804.03209,
2018. URL http://arxiv.org/abs/1804.
03209.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. Hyperpa-
rameter ensembles for robustness and uncertainty quan-
tification. Advances in Neural Information Processing
Systems, 33:6514–6527, 2020.

Xia, G. and Bouganis, C.-S. Augmenting softmax informa-
tion for selective classification with out-of-distribution
data, 2023. URL https://arxiv.org/abs/2207.
07506.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yang, J., Zhou, K., Li, Y., and Liu, Z. Generalized
out-of-distribution detection: A survey. arXiv preprint
arXiv:2110.11334, 2021.

Yang, J., Wang, P., Zou, D., Zhou, Z., Ding, K., Peng, W.,
Wang, H., Chen, G., Li, B., Sun, Y., Du, X., Zhou, K.,
Zhang, W., Hendrycks, D., Li, Y., and Liu, Z. Openood:
Benchmarking generalized out-of-distribution detection,
2022.

Zaidi, S. and Zela, A. Neural ensemble search for perfor-
mant and calibrated predictions. 2020.

Zhang, X.-Y., Xie, G.-S., Li, X., Mei, T., and Liu, C.-L. A
survey on learning to reject. Proceedings of the IEEE, 111
(2):185–215, 2023. doi: 10.1109/JPROC.2023.3238024.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. Hello
edge: Keyword spotting on microcontrollers. CoRR,
abs/1711.07128, 2017. URL http://arxiv.org/
abs/1711.07128.

13

https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1804.03209
https://arxiv.org/abs/2207.07506
https://arxiv.org/abs/2207.07506
http://arxiv.org/abs/1711.07128
http://arxiv.org/abs/1711.07128

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

A. Appendix
A.1. Training and dataset details

In this section, we describe the details of the models evaluated and specifics of training and the experimental setup.

A.1.1. DATASETS

In our evaluations, we use four in-distribution datasets for training all baselines methods we evaluate: 1) MNIST (LeCun
et al., 1998), 2) SpeechCommands (Warden, 2018), 3) CIFAR10 (Krizhevsky, 2009) and 4) TinyImagent (Le & Yang, 2015).

MNIST MNIST is a dataset of handwritten digits containing 60,000 grayscale images of size 28×28 and a test set of 10,000
images. MNIST contains 10 classes

SpeechCommands Speech-Cmd is a collection of short audio clips, each spanning 1 second. The dataset consists of
utterances for 35 words and is commonly used for benchmarking keyword spotting systems. We train our model (DSCNN)
to recognize ten words out of 35: Down, Go, Left, No, Off, On, Right, Stop, Up, Yes. Thus, the number of classes is 10.
The audio files in WAV format are preprocessed to compute Mel-frequency cepstral coefficients (mel-spectograms). The
mel-spectograms are of size 49×10 with a single channel. The DSCNN model is trained for 10 epochs with a batch size of
100.

CIFAR10 CIFAR10 dataset consists of 60,000 32×32 rgb images out of which 10,000 images are in the test set. It contains
10 classes and thus 6000 images per class.

TinyImagenet TinyImagenet is a smaller version of the Imagenet dataset containing 200 classes instead of 1000 classes of
the original Imagenet. Each class in TinyImagenet has 500 images in the train set and the validation set contains 50 images
per class. The size of the images are resized and fixed at 64×64×3.

For image classification tasks, we use the following corrupted versions of ID: 1) MNIST-C (Mu & Gilmer, 2019),
2) CIFAR10-C and 3) TinyImagenet-C (Hendrycks & Dietterich, 2019). All corruptions are drawn from 4 major sources:
noise, blur, weather and digital. The digital and blur corruptions induce high epistemic uncertainty, whereas, noise corrup-
tions induce higher aleatoric uncertainty. In contrast, weather corruptions tend to encompass both epistemic and aleatoric
components. Most corruptions are systematic transformations of input images, which predominantly introduce epistemic
uncertainty. Pure noise corruptions are the primary source of aleatoric uncertainty; however, many corruptions exhibit both
components, often leaning toward epistemic.

MNIST-C The MNIST-C dataset contains 15 corrupted versions of MNIST - shot noise, impulse noise, glass blur, fog,
spatter, dotted line, zigzag, canny edges, motion blur, shear, scale, rotate, brightness, translate, stripe, identity. All the
corruptions are of a fixed severity level.

CIFAR10-C CIFAR10-C includes 19 different types of corruptions with 5 severity levels which gives us 19×5=95
corrupted versions of CIFAR-10 ID. We use all 95 corrupted versions in our experiments. The list of corruptions are:
gaussian noise, brightness, contrast, defocus blur, elastic, fog, frost, frosted glass blur, gaussian blur, impulse noise,
jpeg compression, motion blur, pixelate, saturate, shot noise, snow, spatter, speckle noise, zoom blur.

TinyImagenet-C TinyImagenet-C includes 15 different types of corruptions with 5 severity levels which gives us 15×5=75
corrupted versions of ID. We use all 75 corrupted versions in our experiments. The list of corruptions are: gaussian noise,
brightness, contrast, defocus blur, elastic transform, fog, frost, glass blur, impulse noise, jpeg compression, motion blur,
pixelate, shot noise, snow, zoom blur.

SpeechCmd-C For the audio classification task of Keyword spotting on SpeechCmd, we use corrupt the audio using the
audiomentations library (Jordal, 2024) with the following 11 corruptions: gaussian noise, air absorption, band pass filter,
band stop filter, high pass filter, high shelf filter, low pass filter, low shelf filter, peaking filter, tanh distortion, time mask, time
stretch.

A.1.2. TRAINING DETAILS

We evaluate four models in our experiments:1) 4-layer CNN on MNIST, 2) 4 -layer Depthwise-separable CNN (DSCNN) on
SpeechCmd, 3) Resnet-8 with 3 residual stacks from the MLPerf Tiny benchmark suite (Banbury et al., 2021) on CIFAR10
and 4) MobilenetV2 (Howard et al., 2017) on TinyImagenet.

14

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

Figure 6: Depiction of QUTE during training and inference. The early-exits (EE) are only used during training for weight-
transfer. During inference, the EEs are removed, and only EV-exits are retained. We do not include other layers such as
dense and pointwise convolution in the figure for brevity.

The 4-layer CNN is trained for 20 epochs with a batch size of 256, the DSCNN model is trained for 10 epochs with a batch
size of 100, the Resnet-8 model is trained for 200 epochs with batch size of 32 and the MobilenetV2 model is trained for 200
epochs with a batch size of 128. All models are trained with Adam optimizer with momentum of 0.9 and an initial learning
rate of 0.001, expect DSCNN on SpeechCmd which uses an initial learning rate of 0.0005. The learning rate is decayed
by a factor of 0.99 every epoch for all image classification tasks. We follow a step function for SpeechCmd that reduces
learning rate by half every 2 epochs. For models with QUTE architecture, we achieve the weight transfer from early-exits to
all {fout(.)}Kk=1 using a callback that sets the weights of each foutk with weights copied from the corresponding assisting
early-exit at the beginning of each training batch.

A.2. Weighting the loss at EV-exits

As described in Section 4, we weight the loss at EV-exits with a higher factor wEVk
such that wEVk

= wEVk−1
+ δ. This

is done to further promote diversity across the EV-exits and to vary the influence of each EV-exit on the shared network’s
weights. Utilizing distinct weighting factors across EV-exits implies that each EV-exit contributes to the final loss calculation
with varying degrees of influence. Consequently, this diversity extends to the weight updates of the shared base network,
thereby injecting diversity into the classification heads. We empirically set δ to be 0.5. To determine wEV0 , we repeat
training with wEV0 set to {2, 3, 4, 5}. We find that for wEV0 > 3, the NLL starts dropping steadily because the higher
loss at EV-exits overshadow the losses of the early-exits. This diminishes the influence of early-exits at EV-exits, which is
undesirable. Hence, we set wEV0

= 3 in all our experiments.

A.3. Corrupted-in-distribution datasets

We construct the corrupted-in-distribution (CID) datasets for our evaluations as follows. For MNIST-C with a fixed severity
level, we append each corrupted version of MNIST to the MNIST-ID dataset to create 15 ID+CID datasets. For CIFAR10-C
and TinyImagenet-C, which have 19 and 15 different corruptions respectively with 5 severity levels each, we construct the
corrupted datasets as follows. For each type of corruption, we randomly select p samples from each of the 5 severity levels.
Next, we concatenate all these samples to create a new corrupted dataset of size 5× p. p is selected such that 5× p = size of
ID dataset. This process is repeated for all corruptions. The datasets thus obtained contain samples from all severity levels.
For example, for CIFAR10-C which consists of 19 corruptions, this process yields 19 ID+CID datasets.

15

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

A.4. Accuracy-drop detection experiments

For experiments to detect accuracy drop/CID detection described in Section 6.2, we append the ID dataset with each
corrupted dataset obtained from the methodology described above. For example, for experiments with CIFAR10-C, we
obtain 19 ID+CID datasets that contains both ID samples and corrupted samples (from all severity levels). Next, as described
in Section 5, for each prior work we evaluate, we first iterate over only ID and obtain predictions from the model while
computing the moving average of accuracy of the past m predictions using a sliding-window. In this way, we obtain the
accuracy distribution of the sliding-window ASW on ID, and then compute its mean µID and standard-deviation σID. Next,
we iterate over all ID+CID datasets while computing the moving average of confidence of the past m predictions using a
sliding-window (CSW). We record all instances of CSW dropping below a certain threshold ρ. These events are denoted as
CID-predicted events. At the same time, we also compute ASW for evaluating how many CID-predicted events are actually
a CID-detected event (true positive). Finally, the description of true positive (TP), false positives (FP) , false negatives (FN)
and true negatives (TN) are as follows.

• True positive: CSW < ρ and ASW ≤ µID − 3 · σID

• False positive: CSW < ρ and ASW > µID − 3 · σID

• True negative: CSW > ρ and ASW > µID − 3 · σID

• False negative: CSW > ρ and ASW ≤ µID − 3 · σID

In this way, we collect the TP, FP, TN, FN from each ID+CID datasets and compute the average precision and recall for
a given threshold ρ. Finally, we report the AUPRC. We choose AUPRC because the precision-recall curve is resistant to
imbalance in datasets.

B. Ablation Studies
B.1. Uncertainty quantification vs Ensemble size

In this section, we conduct an ablation study to investigate the effect of number of early-exits on uncertainty estimation
quality. The ensemble size |K| is an hyperparameter that depends on the computation/resource budget, and it is bounded
above by the depth of the base network. We vary the ensemble size and investigate its effect on calibration quality in
MobilenetV2. Figure 7 shows the effect on accuracy and NLL in MobilnetV2 for |K| ranging from 2-10. The red line

2 4 6 8 10
0.34

0.35

0.36

0.37

0.38

2 4 6 8 10

Ensemble Size (|K|)

A
cc

ur
ac

y
(%

)

(a) Accuracy (↑)

2 4 6 8 10
3.5

4

4.5

5

5.5

2 4 6 8 10

Ensemble Size (|K|)

N
L

L

(b) NLL (↓)

Figure 7: Effect of Ensemble size on Accuracy and NLL in MobilenetV2 on TinyImagenet. Red dotted horizontal line
indicates accuracy and NLL of BASE in respective plots

shows the accuracy and NLL of base network in respective plots. As shown, the accuracy does not always improve with
ensemble size. This demonstrates that there is a limit to the improvement in accuracy due to early-exits. On the other hand,
NLL steadily improves as ensemble size increases with the least NLL obtained for |K| = 8. For |K| = 10, the NLL rises
slightly. Our investigations revealed that since the base network, early-exits and the early-view (EV) exits are part of the
same network architecture, and are trained simultaneously, the disruption in base network’s weights due to the losses of
early-exits and EV-exits reaches a tipping-point after a certain ensemble size thereby, causing a drop off in performance.

16

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

B.2. Ablations with EE-ensemble

B.2.1. EXCLUDING FINAL EXIT FROM FINAL PREDICTION

As described in Section 5, we exclude the original output block of the base network when computing the final prediction
vector for QUTE because we find it that is overconfident and harms calibration quality. However, we include the original
output block’s prediction vector along with that of of all early-exits for computing the final prediction vector for EE-ensemble,
consistent with the original paper Qendro et al. (2021). We conduct an ablation study on CIFAR10 using Resnet-8, where
like QUTE, we exclude the original output block’s prediction vector when computing the final prediction vector. Table 9
reports the calibration metrics on CIFAR10-ID for two configurations: 1) including original output block in computing final
prediction vector and 2) excluding original output block in computing final prediction vector.

Including final-exit Excluding final-exit
Resnet-8 F1 (↑) BS (↓) NLL (↓) F1 (↑) BS (↓) NLL (↓)
CIFAR10
- EE-ensemble 0.854 0.021 0.446 0.818 0.0026 0.561

Table 9: Calibration Metrics for Resnet-8 on CIFAR10-ID computed including original output block and excluding original
output block from computation of final prediction vector.

As seen, the removal of original output block negatively impacts EE-ensemble leading to poor accuracy and calibration.
Therefore, we include the original output block in computing the final prediction vector in our main results for EE-ensemble.

B.2.2. USING QUTE’S OUTPUT BLOCK ARCHITECTURE FOR EARLY-EXITS IN EE-ENSEMBLE

Qendro et al. (2021) adds additional fully-connected layers at the early-exit for EE-ensemble to match the learning capacities
of all exits. However, this leads to a large overhead (Table 4). In this ablation study, we show that the additional layers at
the early-exit are necessary for EE-ensemble to achieve good accuracy and calibration. We replace the resource-hungry
early-exits of EE-ensemble with the architecture of QUTE’s output blocks.

In-distribution Corrupted-in-distribution
Resnet-8 F1 (↑) BS (↓) NLL (↓) F1 (↑) BS (↓) NLL (↓)
CIFAR10
- EE-ensemble w/ additional layers 0.85 0.021 0.446 0.64 0.0049 1.256
- EE-ensemble w/o additional layers 0.78 0.031 0.661 0.57 0.0058 1.459

Table 10: Calibration Metrics for Resnet-8 on CIFAR10-ID computed for EE-ensemble with additional FC layers and
without additional FC layers

Table 10 reports the calibration metrics for two configurations: 1) EE-ensemble with additional FC layers at the early-exit
and 2) EE-ensemble with QUTE’s lightweight output block architecture at the early-exits. As seen, the configuration with
extra learning layers clearly outperforms the one without on both ID and CID in terms of accuracy and calibration. The
early-exits placed at different depths work with much less information compared to the final exit. As a result, the accuracy
and calibration invariably degrade if the learning capacities of all early-exits do not match that of the final exit.

B.3. MCU results

SpeechCmd CIFAR10
Model Accuracy Size (KB) Latency (ms) Accuracy Size (KB) Latency (ms)
- BASE 0.92 294.5 22.7 0.83 344.4 58.04
- DEEP 0.93 321.6 45.4 0.88 423.4 116.2
- EE-ensemble 0.92 361.5 51.7 0.85 735.5 65.4
- QUTE 0.93 297.8 24.07 0.85 355.3 59.6

Table 11: Microcontroller results on Big-MCU (STM32F767ZI)

Tables 11 and 12 reports the on-device results for Big-MCU and Small-MCU respectively. We report the accuracy, code-size
and the latency of each method. On Big-MCU, all methods fit on the device. The low memory-footprint of QUTE allows it

17

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

SpeechCmd CIFAR10 MNIST
Model Accuracy Size (KB) Latency (ms) Accuracy Size (KB) Latency (ms) Accuracy Size (KB) Latency (ms)
- BASE 0.92 84.8 160.7 0.83 187.5 291.2 0.906 100.3 5.01
- DEEP 0.93 111.3 321.2 DNF/OOM 0.93 109.3 9.3
- EE-ensemble 0.92 157.7 376.3 DNF/OOM 0.93 113.5 23.7
- QUTE 0.93 93 173.1 0.85 201 298.05 0.92 108.2 5.8

Table 12: Microcontroller results on Small-MCU (STM32L432KC). DNF/OOM indicates did-not-fit/out-of-memory

reduce the code-size consistently across datasets, leading to lower latency and, consequently, reduced energy per prediction.
In contrast, EE-ensemble has higher memory requirements due to the expensive dense layers at its early exits. Furthermore,
with no parallel execution capabilities on an MCU, the latency of DEEP with two ensemble members takes roughly twice as
long to execute compared to BASE. This issue could worsen significantly with a larger ensemble size.

We observe a similar trend on the Small-MCU, with QUTE providing the best uncertainty quantification (UQ) per unit
of resource used. However, both EE-ensemble and DEEP exceed the available 256KB of ROM on Small-MCU, making
them unsuitable for ultra-low-power devices. In such scenarios, QUTE emerges as the only practical solution for effective
UQ. Furthermore, we observe an interesting trend on the MNIST dataset. When using a 4-convolution layer model (4-layer
CONV), the code sizes of all methods are quite similar, even exceeding that of the SpeechCmd BASE model, which employs
a 4-layer depthwise-separable convolutional model (4-layer DSCNN) with 20,000 more parameters. A deeper analysis
of the MAP files, which detail memory allocation, reveals that MNIST uses standard convolutions instead of separable
convolutions. Therefore, the memory required for code is significantly higher for the 4-layer CONV model compared to the
4-layer DSCNN. In fact, the memory required for operators and code in the 4-layer CONV model is four times greater than
the memory needed to store its weights.

These results highlight the efficiency of QUTE. While other methods may struggle with memory limitations, QUTE
manages to deliver effective UQ without compromising on resource utilization. Its design allows for optimal performance
even in constrained environments, making it a compelling choice for applications where both accuracy and efficiency are of
paramount importance.

C. Evaluation metrics
We evaluate uncertainty using the following metrics.

Brier Score (lower is better): It is a proper scoring rule that measures the accuracy of predictive probabilities. Incorrect
predictions with high predictive confidence are penalized less by BS. Thus, BS is less sensitive to corruptions and incorrect
predictions. Therefore, NLL is a better measure of uncertainty to compare with other methods.

BS =
1

N

N∑
n=1

l∈{1,2,..L}

(pΘ(y = l|x)− 1(y = l))2 (4)

where, 1 is an identity function and L is the number of classes.

Negative log-likelihood (lower is better): It is a proper scoring rule that measures how probable it is that the predictions
obtained are from the in-distribution set. It depends on both the uncertainty (predictive confidence) and the accuracy of the
predictions.

NLL = −
∑

l∈{1,2,..L}

1(y = l) · logpΘ(y = l|x) + (1− 1(y = l)) · log(1− p(y = l|x)) (5)

Expected Calibration Error (ECE) (lower is better): ECE measures the absolute difference between predicted confidence
and actual accuracy across different confidence intervals. The confidence is in the range [0,1]. ECE divides the confidence
range into M intervals/bins of size 1

M and computes the bin accuracies and confidence of each bin before averaging them to
provide the final ECE score.

ECE =

M∑
m=1

|Bm|
N

· |acc(Bm)− conf(Bm)| (6)

18

QUTE: Quantifying Uncertainty in TinyML models with Early-exit assisted ensemble

where, N is total number of predictions, Bm is the mth bin spanning the interval (m−1
M , m

M). A low ECE score is desirable,
and indicates less disparity between confidence and accuracy across all intervals. However, the ECE score has several
limitations and susceptibilities.

Limitations of ECE
1) ECE divides predicted probabilities into discrete bins. However, there might be a severe imbalance of samples across the
bins because neural networks tend to always predict with high confidence (Nixon et al., 2019). This causes only a few bins
(concentrated towards the high confidence region) to contribute the most to ECE. In addition, ECE is also sensitive to the
bin boundaries i.e., the number of bins.

2) ECE does not differentiate between specific types of miscalibration such as overconfidence/underconfidence , often
providing a simplistic and (overly) optimistic view of the calibration quality. Therefore, ECE is not a proper scoring metric.
A model might have a lower ECE without genuinely having good calibration.

For these reasons, we do not emphasize ECE in our main results as they are not indicative of the model’s true calibration
quality. We focus more on proper scoring metrics like NLL and BS in our main results.

19

